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ABSTRACT 

Previously [7] we proved among other results that a closed connected set in 
E,, which has a unique point of local nonconvexity is starshaped. Here we 
characterize a fairly large class of plane sets whose points of local nonconvexity 
are so arranged that starshapedness follows. This theory determines as a 
special case the simple closed polygonal regions which are starshaped. In 
order to proceed simply we utilize the following notations and definitions. 

NOTATIONS. The interior, closure and boundary of a set S in Euclidean n-space 

E n are denoted by intS,  c lS and bd S respectively. The closed segment joining 

points x ~ En, y ~ E~ is denoted by xy. Set union, intersection and difference are 

indicated by L), ~ and ,-, respectively. The symbol conv S denotes the convex 

hull of  the set $. The symbol 0 denotes the empty set. 

DEFINITION 1. A point x ~ S is a point of  local convexity of  S if there exists a 

neighborhood N of  x such that N n S is convex; otherwise x is called a point of 

local nonconvexity. The set of  all points of  local nonconvexity of  S is denoted by Q. 

DEFINITION 2. A set S is starshaped with respect to a point p if px c S for all 
points x e S. 

DF2INITION 3. The two closed rays of  a line L which have only a point x ~ L in 

common are called complementary rays. I f  R(x) is a ray with endpoint x, its 
complementary ray is denoted by R'(x). 

DEFINITION 4. A ray R(x) with endpoint  x e bd S is an external ray of support  
to the int S if R(x) n i n t  S = 0. 

DEFINITION 5. I f  X is a boundary point of  a set S, then K(x) is the union of all 

the external rays of  support  to int S at x. A boundary point x e S is called a one- 

sided point of  external support  of  int S if 

K(x) O, 

and if K(x) lies in a dosed  half-space which contains x in its boundary. The set 

K(x) is called an external cone of  support. The union of  all the complementary 

rays R'(x) where R(x)c  K(x) is denoted by 

r'(x). 
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The following theorem is one of Krasnoselskii type [2], and it is also related to 
results developed by Eugene Robkin in his thesis 15]. For another kind of theorem 
of Krasnoselskii type for polygonal regions see Molnar [4]. 

THEOREM 1. Suppose S c E 2 is a bounded plane set which is the closure of 
an open connected set. 

Then S is starshaped if  and only if both of the following conditions hold. 
(a) Each point of local nonconvexity x e S has a nonempty cone of external 

support K(x) to intS at x. 
(b) I f  xl,x2,x3 are three points of local nonconvexity of S (they need not be 

distinct) which are also one-sided points of external support to int S, then there 
exist three external rays of support R(xl),R(x2),R(x3) to int S at xl,x2, x3 
respectively whose corresponding complementary rays R'(xO, R'(xz),R'(x3) are 
concurrent and meet in S, so that 

(1) S ~  R'(Xl) N R'(x2) N R'(x3) ~ 0. 

Proof. We will prove that conditions (a) and (b) imply that S is starshaped. 
Let Q1 denote the set of all points of local nonconvexity of S which are also one- 
sided points of external support to int S (see Definitions 1 and 5). First, observe 
that if S is convex then Q1 = 0; however, in this case S is also starshaped, being 
convex. Hence, suppose S is not convex. Since int S ~ 0, when int S is not convex 
a theorem of Leja and Wilkosz [3] implies that a point q of local nonconvexity of S 
exists which is the midpoint of the bounding diameter of a closed semicircular region 
which, except for q, lies in int S. Clearly such a point q is in Qt, so that QI ~ 0. 

Now define C(x) as follows, 

C(x) - ( c o n v  K'(x)) n conv S 

where x E QI (see Definition 5). Since conv K'(x) is closed, and since S is compact, 
the set C(x) is compact. By hypothesis, every three of fewer members of the 
collection of compact convex sets 

{C(x),xe 01} 
have at least one point in common. Helly's Theorem [1] then implies that 

(2) M -  ('] C(x) # O. 

xEQI 

Let p 6 M. We will prove that S is starshaped relative to p. Firstly, if pC S, then 
since S is compact and connected there exists a cross-cut of the complement of  S, 
say uv, such that 

(3) u e S, v e S, S n (uv ~ u ~ v) = 0, (p, u, v) are collinear. 

Secondly, if p e S and if there exists a point y ~ S such that 
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(4) p y  q~ S 

there again exists a cross-cut of the complement of S, uv, such that (3) holds. 
Hence, to prove p y  ~ S for each y e S, we prove that (3) cannot hold. Suppose (3) 
does hold. Since S is closed and connected, the segment uv divides a component 
of the complement of S, say K, such that K .,. uv contains at least one bounded 
component. Let K 1 be such a bounded component of K .~ uv. This component K 1 
of  K ~ uv abuts uv from one side of uv. Let H be that closed half-plane whose 
boundary contains uv and in which K t abuts uv. Consider the set 

K* - cl conv(H n K1). 

Since K* is a compact convex set with int K* ~ 0, and since int K* c H, there 
must exist a point 

x e bd K*  

and a line of support L to K* such that 

(5) Lt~ K* = x, x ~ S 

and such that p and uv lie in the same open half-space bounded by L. Since 

u e S, v e S, u # v, since S = cl int S, and since int S is open and connected, for 
each e > 0 there exists points u 1 ~ int S, v l~  int S such that 

l I u l - u l ]  < e, ] l v l - v i i  < e  

and such that a polygonal path P(u~,v l )  exists in int S joining u 1 and v i. Now, 
clearly x is a point of local nonconvexity of S otherwise the convexity of S r~ N 
for some neighborhood N of x would violate condition (5). Furthermore, one 
can choose a bounded component Ks of  K .,. uv and an e. > 0 (above) so that K(x )  

must be in the closed half space bounded by L which contains p and uv, because 

K ( x )  N P(Ul ,Vl)  = O. 

However, in this case, no ray R(x) in conv K(x) exists whose complementary ray 
R ' ( x )  contains p. This, however contradicts (2), since p E M. Hence, we have 
arrived at a contradiction. Therefore, S is starshaped. 

Since the converse situation is trivial, we have proved Theorem 1. 
Theorem 1 has an interesting form when the boundary of  S is a simple closed 

polygon in E2. To state it we first note the following. 

DrrINmON 6. A vertex x of a simple closed polygon P is called reentrant if x 
is a point of  local nonconvexity of  the closed bounded polygonal set whose 
boundary is P. 

TrmOR~M 2. Let  S be a bounded closed set in E2 whose boundary  is a s imple  

closed polygon.  Suppose  that  f o r  each three reentrant  vert ices o f  bd S, x t,  x 2, x a 
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there exis t  three ex terna l  rays  o f  support  at  x l , x z , x  3 respect ively  to int  S whose 

corresponding c o m p l e m e n t a r y  rays  are concurrent  (see (1)) and meet  in S. 

Then  S is s tarshaped.  

Proof .  Theorem 2 fol lows f rom Theorem 1 since cond i t ions  (a) and  (b) a re  

au tomat i ca l ly  bo th  satisfied. 
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